

ECE 111 Electronic Engineering Fundamentals 2015-2016

Semiconductors

Assistant professor:
Abdallah Hammad
Lecturer at Faculty of Engineering (at Shoubra)
Benha University

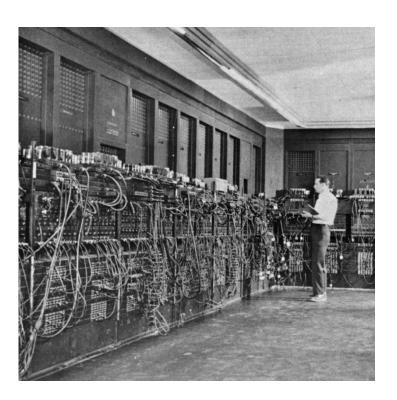
1

content

- · semiconductors and their structure
- production of silicon
- band diagram
- intrinsic carrier concentration
- · influence of temperature

Semiconductor Devices

Semiconductor devices are <u>electronic components</u> that exploit the <u>electronic</u> properties of <u>semiconductor</u> materials, principally <u>silicon</u>, <u>germanium</u>, and <u>gallium arsenide</u>.


Semiconductor devices have replaced <u>thermionic devices</u> (vacuum tubes) in most applications. They use <u>electronic conduction</u> in the <u>solid state</u> as opposed to the <u>vacuum state</u> or <u>gaseous state</u>.

Semiconductor devices are available as discrete units (such as those sold in electronics stores) or can be integrated along with a large number — often millions — of similar devices onto a single chip, called an integrated circuit (IC).

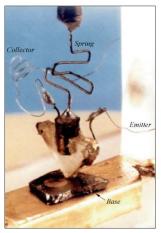
3

The first computers using vacuum tubes

The first computers using vacuum tubes appeared around 1945 : (ENIAC.)

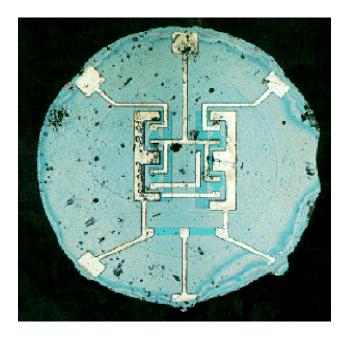
They were quite power hungry and heavy machines. The ENIAC contained around 17500 vacuum tubes as well as 1500 relays.

First transistor



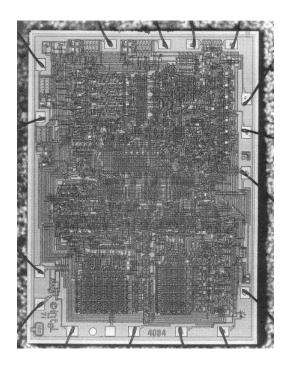
1947

Picture shows a point-contact transistor structure comprising the plate of n-type germanium and two line-contacts of gold supported on a plastic wedge.


The first point contact transistor William Shockley, John Bardeen, and Walter Brattain Bell Laboratories, Murray Hill, New Jersey (1947)

First monolithic integrated circuit

1961


Picture shows a flipflop circuit containing 6 devices, produced in planar technology.

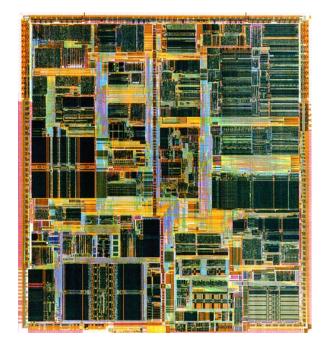
Source:

R. N. Neyce, "Semiconductor deviceand-lead structure", U.S.Patent 2,981,877

First microprocessor

1971

Picture shows a four-bit microprocessor *Intel 4004*.


- 10 µm technology
- 3 mm × 4 mm
- 2300 MOS-FETs
- 108 kHz clock frequency

Source:

Intel Corporation

Pentium IV processor

2001

Picture shows a ULSI chip with 32-bit processor *Intel Pentium 4*.

- 0.18µm CMOS technology
- 17.5 mm × 19 mm
- 42 000 000 components
- 1.6 GHz clock freuqncy

Source: Intel Corporation

MOORE'S LAW "Transistor density on integrated circuits doubles about every two years." *

1950s Silicon Transistor

1 Transistor

1960s ⊞L

16 Transistors

1970s 8-bit

4500 Transistors

1980s

275,000 Transistors

1990s

32-bit Microprocessor

3,100,000 Transistors

2000s

64-bit Microprocessor

592,000,000 Transistors

9

Semiconductors

Period	II	III	IV	V	VI	
2		В	C	N	0	
3	Mg	Al	Si	Р	S	
4	Zn	Ga	Ge	As	Se	
5	Cd	In	Sn	Sb	Te	
6	Hg		Pb	Bi		

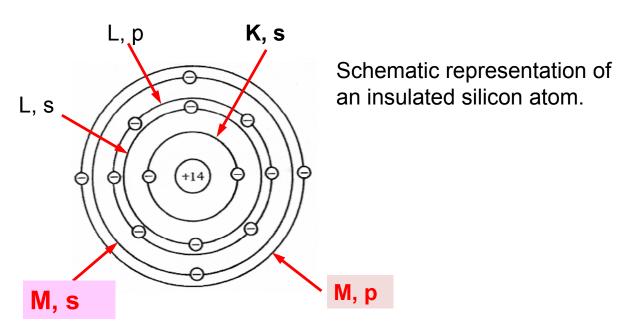
III-V semiconductors

Period	II	III	IV	V	VI
2		В	С	N	0
3	Mg	Al	Si	(P)	S
4	Zn	(Ga)	Ge	(As)	Se
5	Cd	(In)	Sn	Sb	Te
6	Hg		Pb	Bi	

11

II-VI semiconductors

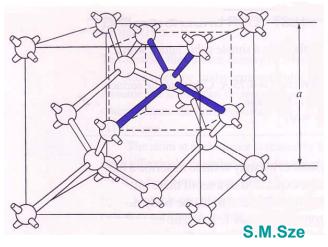
Period	II	II III IV		V	VI	
2		В	С	N)0	
3	Mg	Al	Si	Р	_(s)	
4	Zn	Ga	Ge	As)e	
5	(Cq)	In	Sn	Sb	(Te)	
6	Hg		Pb	Bi		


Electron shells and sub-shells

shell	K	L		M		N				
n	1	2		3			4			
sub-shell	S	S	р	S	р	d	S	р	d	f
I	0	0	1	0	1	2	0	1	2	3
electron	2	2	6	2	6	10	2	6	10	14
number	2	8		18		32				

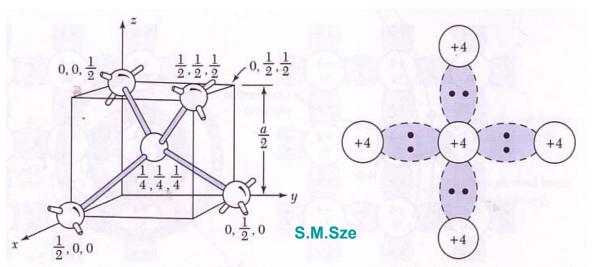
13

atomic structure of silicon



Crystal structure

Si: diamond lattice



15

Tetrahedron bond and lattice

3D structure covalent bonding

2D representation electron pair

Silicon production

production steps of silicon

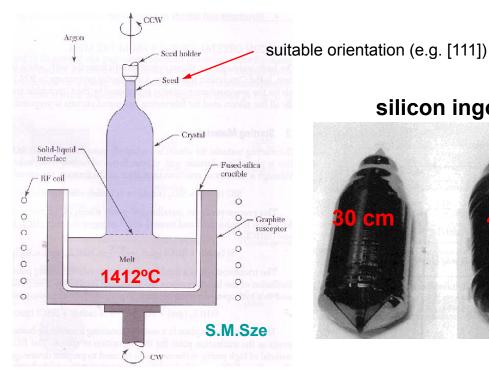
"95% of materials used by the electronic industry is silicon" SiO₂ sand (quartzite)

$$\mathrm{SiC}\;(\mathrm{solid}) + \mathrm{SiO}_2\;(\mathrm{solid}) \rightarrow \mathrm{Si}\;(\mathrm{solid}) + \mathrm{SiO}\;(\mathrm{gas}) + \mathrm{CO}\;(\mathrm{gas})$$

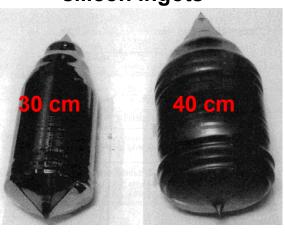
98% pure silicon

Si (solid) + 3HCl (gas)
$$\xrightarrow{300^{\circ}\text{C}}$$
 SiHCl₃ (gas) + H₂ (gas)

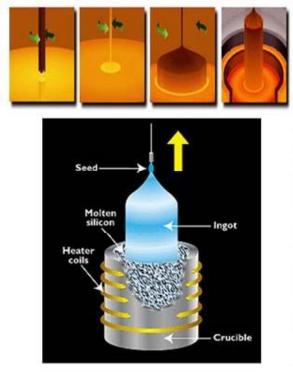
gaseous trichlorosilane


$$SiHCl_3 (gas) + H_2 (gas) \rightarrow Si (solid) + 3HCl (gas)$$

rods of ultrapure polycrystalline silicon

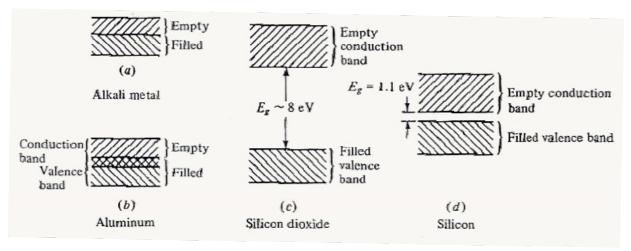

17

Czochralski technique





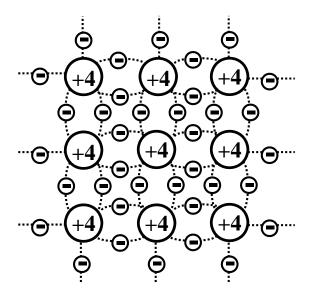
silicon ingots



19

Band diagram

energy band representation



S.M.Sze

Schematic energy band representations for different materials

Intrinsic semiconductors

valence bonds model

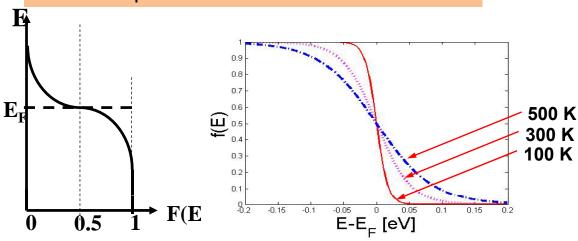
properties:

- No impurities only tetrahedron bonds.
- All bonds complete at 0K.
- Part of electrons from tetrahedron bonds is released at higher temperatures.

21

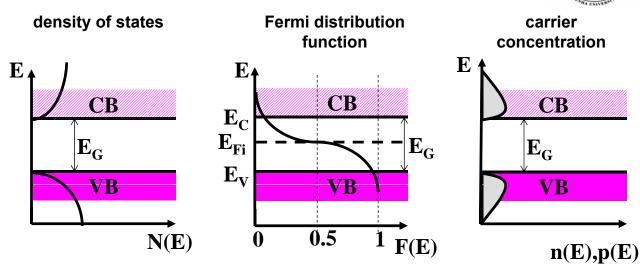
electrons and holes in Si

Fermi distribution function



$$F(E) = \frac{1}{1 + \mathbf{e}^{(E - E_F)/kT}}$$

 $E_{\rm F}$ Fermi level


K Boltzmann's constant 1.38x10⁻²³J/K

T temperature in kelvins

carrier concentration

$$n = p = n_i = \int_{E_C}^{\infty} f(E)N(E)dE$$

Density of energy states

Density of states in the conduction band:
$$N(E) = \frac{4\pi}{h^3}(2m_e)^{3/2}\sqrt{E-E_c}$$
 Density of states in the valance band:
$$N(E) = \frac{4\pi}{h^3}(2m_e)^{3/2}\sqrt{E_v-E_c}$$

Density of states in the valance band:

h – Planc's constant **6.62x10**⁻³⁴**J.s** where:

> $m_{\rm e}$ – effective mass of electron $m_{\rm h}$ – effective mass of hole

Total number of electrons in the conduction band:

$$n = \int_{E_C}^{\infty} f(E)N(E)dE = N_C e^{E_F - E_C/kT}$$

 N_c – effective density of states in the conduction band

$$N_{C} = \frac{4\sqrt{2}}{h^{3}} \left(KT\pi m_{e}^{*}\right)^{3/2}$$

25

Holes in valence band:

The total number of holes in the valence band:

$$p = \int_{-\infty}^{E_V} \left[1 - f(E)N(E) \right] dE = N_V e^{E_V - E_F/kT}$$

 $N_{\rm V}$ – effective density of states in the valence band

$$N_V = \frac{4\sqrt{2}}{h^3} \left(KT \pi m_h^* \right)^{3/2}$$

Fermi level in intrinsic semiconductor

assuming: $n = p = n_i$

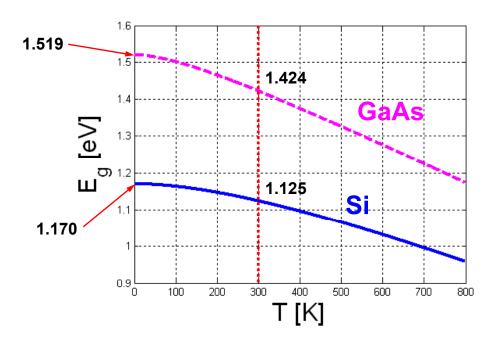
from: $n = N_C e^{-(E_C - E_F)/kT}$

and: $p = N_V e^{-(E_F - E_V)/kT}$

$$E_{Fi} = \frac{E_C + E_V}{2} + \frac{kT}{2} \ln \frac{N_V}{N_C}$$

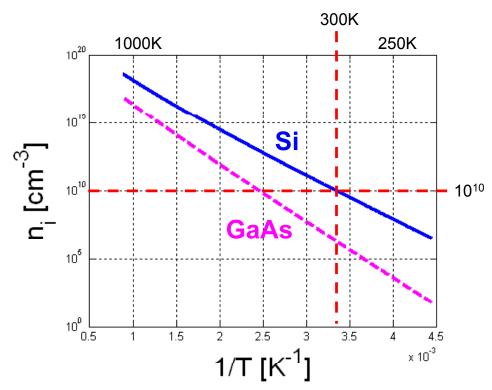
27

Intrinsic carrier density


$$n = p = n_i \qquad \qquad \boxed{np = n_i^2}$$

$$pn = N_C N_V e^{-E_g/kT}$$

$$n_i = \sqrt{N_C N_V} \exp\left(-E_g/2kT\right)$$



Influence of temperature

